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Abstract

Implicit Neural Representation (INR) is a promising rep-
resentation pattern that can be used to unify different data
types. It has been thoroughly explored in the areas of gen-
eration, discriminative modeling, and permutation symme-
try. In this paper, we take a further step to explore the gen-
eralization ability of INR from the perspective of few-shot
learning. Few-shot learning is a highly challenging task for
implicit representations, as generalization needs to be per-
formed from only a few labelled examples. We conduct in-
depth analyses into what is needed to make INRs work for
discriminative learning with limited samples, with the com-
plexity and number of parameters of INRs, inherent data
augmentation from INRs, the choice of activation function,
and weight initialization as important factors towards gen-
eralization of this special representation. We hope that this
direction will encourage further exploration by others.

1. Introduction
Implicit Neural Representations (INRs) [23, 19, 4, 33,

28] are coordinate-based neural networks that represent a
field, such as an image, by mapping 2D coordinates to color
in image space. The adoption of neural fields has garnered
substantial attention in the realm of computer vision, serv-
ing as a versatile means to represent diverse signals encom-
passing images [14, 33], 3D shapes/scenes [23, 19, 20],
video [2], audio [28], medical images [26], climate data
[11], and signals on non-Euclidean domain [13].

While methods for simple object-level data explore em-
bedding a collection of data signals into INRs with shared
latent space [19, 4, 1, 3], more related works [28, 33, 20]
focus on fitting one INR function per data rather than gen-
eralizing across a set of signals, which is empirically much
easier to optimize for complex data with high fidelity, even
for exceedingly intricate 3D shapes [6] or images. Notably,
the construction of individual INRs for each distinct shape
or image is not only viable but also considerably more fea-
sible for real-world deployment. An explicit advantage lies
in the fact that this strategy obviates the necessity of having

access to the complete dataset to accurately fit an INR to a
specific shape or image. The increasing traction garnered
by such methodologies suggests that the practice of fitting
an individual network per input sample is poised to evolve
into a common practice within the realm of learning INRs.

Despite the advantages and increasing popularity, how
to process and learn on INRs that encode signals in the
function space is not as straightforward as conventional data
representations. Moreover, modeling individual INRs with
no generalization [5] brings up a more challenging task to
learn on these INR networks, especially when generalizing
from limited data is of concern. Recent works have ex-
haustively explored INRs with regard to their discrimina-
tive capabilities [21], symmetry design involving permuta-
tion [21, 36, 39, 38], and data compression [37, 10]. Nev-
ertheless, the current state-of-the-art performance of CI-
FAR10 image INR classfication sits at 63.4% accuracy [39],
significantly trailing the 99.5% accuracy achieved through
traditional pixel-based methods [9]. This disparity un-
derscores the challenges that underlie the classification of
INRs.

This limiting capability of learning on INRs ( espe-
cially for classification task ) prompts a comprehensive ex-
ploration of the potential in the challenging landscape of
few-shot learning [35, 29, 12], which is more demanding
than general many-shot classification due to its need for
strong generalization from few annotations. To the best
of our knowledge, this work is the first attempt to subject
INR-based classification to a rigorous stress-testing regi-
men of few-shot learning. By delving into this uncharted
territory, we aim to gain insights into the adaptability and
limitations of learning on INRs in scenarios with limited
data, thereby extending the frontiers of their applicabil-
ity. This research not only contributes to the evolution
of INR-based learning but also serves as a guiding com-
pass for future investigations of leveraging Implicit Neural
Representations for high-level recognition beyond classifi-
cation [39, 38, 21, 36], steering the trajectory of innovation
in this dynamic field.

Our contributions are multifaceted. Firstly, this paper
represents the inaugural foray into dissecting INRs through
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Figure 1. Our method is composed of two decoupled parts. 1). Addressing overfitting in the context of INRs by associating coordinates
with RGB values, INR η is obtained in the end. 2). Utilizing the INRs η from the first step as the input representation for few-shot
learning. We employ a similarity matching loss between support and query INRs to accomplish few-shot learning. The Few-shot model is
parameterized by θ.

the prism of the few-shot framework. Secondly, we cu-
rate several datasets, ranging from easy to complex, to con-
duct an exhaustive dissection of various contributing fac-
tors. These factors include augmentation, activation func-
tions, and initialization techniques, network architectures,
and other pertinent factors. Lastly, we proffer a rudimentary
yet competitive transformer-based baseline model. This
baseline model serves as a crucial benchmark, intended to
catalyze and propel advancements within this evolving do-
main.

2. Method
We outline our approach in two distinct segments. Ini-

tially, we extract the INR by correlating pixel coordinates
with RGB values. Subsequently, in the second phase, we
treat INR as the image’s feature representation and employ
it in the encoder P (·; θ) as the input for the few-shot learn-
ing process. We will proceed to elucidate these steps indi-
vidually.

2.1. Obtaining INR by overfitting

INRs are functions xη : K → A mapping coordinates
k ∈ K (e.g. pixel locations) to features a ∈ A (e.g. RGB
values) with parameters η. Given a data point as a collection
of coordinates {ki}i∈I and features {ai}i∈I (where I is
an index set corresponding to e.g. all pixel locations in an
image), INRs are fitted by minimizing mean squared error
over all coordinate locations:

min
η
L(xη, {ki,ai}i∈I) = min

η

∑
i∈I
∥xη(ki)− ai∥22. (1)

Hence each xη is the Implicit Neural Representation ( INR
) corresponds to e.g. a single image. Typically, xη is pa-

rameterized by a feedforward neural network (MLP) with
positional encodings [20, 33] or sinusoidal activation func-
tions [28] that allow fitting of high-frequency signals.

2.2. Few-Shot Generalization of Learning on INRs

We focus on few-shot classifier learning, a scenario in-
volving three distinct datasets: meta-train, meta-val, and
meta-test sets. In this setup, the support and query sets are
characterized by a shared label space, while the meta-train
set encompasses labels that remain distinct and do not in-
tersect with those of the meta-val/meta-test sets. When ad-
dressing a specific few-shot challenge involving K labeled
instances for each of C distinct classes present in the sup-
port set, we denote it as a C-way K-shot problem.

Relying solely on the support set, we are able to train
a classifier that assigns class labels ŷ to samples x̂ within
the query set. Yet, owing to the scarcity of labeled support
samples, the performance of this classifier often falls short
of expectations. To address this limitation, our goal is to en-
gage in meta-learning using the training set. This endeavor
seeks to distill transferable insights, thereby enhancing the
efficacy of few-shot learning on the INR support set and
leading to improved classification of the INR query set.

2.3. Input and Network Design

In the following section, we explore two structures for
injecting inductive bias into the framework of few-shot
learning: MLP and Transformer [34], as shown in Figure 2.
However, the representation of x is not a perfect tensor
structure that can be used by the MLP and transformer, as it
is represented by weight and bias. In the following, we will
explain how to organize the weight and bias into a suitable
format to fit them into the MLP or transformer.
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Figure 2. Two different formulations of the weight-bias in
INRs. In the case of the left figure, we straightforwardly flatten
the combination of weight and bias, creating a one-dimensional
vector. Conversely, for the right figure, we input the merged
weight-bias combination, treating it as an individual token within
the transformer.

Vectorized weight and bias for MLP. We consider
INRs composed of several hidden layers, each one with H
neurons, i.e. the linear transformation between two consec-
utive layers is parameterized by a matrix of weights Wi ∈
RH×H and a vector of biases bi ∈ RH×1. Thus, stacking
Wi and bi

T , the mapping between two consecutive layers
can be represented by a single matrix Mi ∈ R(H+1)×H .
For an INR composed of L + 1 hidden layers, we consider
the L linear transformations between them. Hence, stack-
ing all the L matrices Mi ∈ R(H+1)×H , i = 1, . . . , L, be-
tween the hidden layers we obtain a single matrix M ∈
RL(H+1)×H as shown in Figure 2. We use it to represent
the INR x as the input of the encoder P (·; θ). The encoder
P (·; θ) is typically formulated by a MLP.

Tokenize weight and bias for Transformer. We treat
the weight and bias of each layer as a single token. For
example, in a 2-layer network, we have a total of 4 tokens
encompassing the weight and bias for both layers. Since the
feature dimensions may differ, we also use a MLP to convert
them into the same dimension. The converted tokens are
concatenated and fed into a transformer network [34].

2.4. Training and Evaluation

Similarity Loss. We aim to establish a correspondence
from a limited support set comprising k instances of image-
label pairs denoted as S = (xi,yi)

k
i=1, leading to the cre-

ation of a classifier cS(x̂).
We define the transformation P (ŷ|x̂, S; θ) : S → cS(x̂),

with P being parameterized through a neural network. In
detail, P (·; θ) is formulated as:

P (ŷ|S; θ) =
∑k

i=1 e
c(f(x̂),g(xi))yi∑k

j=1 e
c(f(x̂),g(xj))

, (2)

where S = (xi,yi)
k
i=1 from the support set, and c(·, ·) is

the cosine similarity metric, The functions f and g can act
as feature extractors. Typically, in standard scenarios, the
parameters of both f and g are shared.

Meta-training stage. Although, there exists several
fine-tuning based meta-learning paradigm [12] in this
regime. For simplicity, we opt for non fine-tuning based
method e.g., [35, 29, 32] In general, the training loss can be
formulated in the following:

θ = argmax
θ

EL∼T

ES,Q∼L

 ∑
(x,y)∈Q

logP (y|x, S; θ)

 .

(3)
where S is the INR support set, Q denotes a batch of query
data with INR x and corresponding label y. A label set L
sampled from a task T , L ∼ T , will typically have 5 to 25
examples. T denotes the task set, which typically contains
the full class set of training INRs.

Meta-evaluation stage. Evaluation using the following
Equation results in a model that performs well when sam-
pling S′ ∼ T ′ from a different distribution of unseen labels.

ỹ = argmax
ỹ

P (ỹ|x, S′; θ) . (4)

This can serve as a simple indicator of the model’s ability
to generalize to unseen INRs.

Dataset normalization. We empirically found dataset
normalization to be beneficial and aid training. The INRs
are normalized as follows: let x[i] denote the i-th layer of
the INR in the dataset and let x[ij] the j-th entry in x[i],
which can be two types, weight, and bias. Let µ(x[ij]) de-
note the mean vector over the dataset and σ(x[ij]) the vector
of standard deviations. We normalize each element as :

x[kij] ← (x[kij] − µ(x[ij]))/σ(x[ij]), (5)

where x[kij] denotes the partial INR from i-th layer and
weight/bias from k-th sample. Therefore, for every weight
and bias from different layers, they approximately follow a
normal distribution.

3. Experiments
In this section, we first introduce the details of the train-

ing and evaluation, followed by the details of our three INR
datasets. Based on the organized dataset, we conduct exten-
sive ablation studies across INRs complexity, weight initial-
ization, normalization, and INRs augmentation. With these
experiments, we shine light on the components that are key
towards better discriminative image-based learning in INRs.

3.1. Training Details

For INRs, by default we use the SIREN [28] architec-
ture, i.e., MLP with sine activation. We train the INRs using



Dataset INR-Omniglot INR-Fewshot-CIFAR100 INR-mini-ImageNet

train/val/test set 33/5/121 60/20/20 64/16/20
Dataset Size 32,460 60,000 60,000
Image Resolution 32×32×1 32× 32× 3 84×84× 3
Activation Function SIREN SIREN SIREN
INR Structure: Low-complexity 2/32/32/1 2/64/64/3 —
INR Structure: High-complexity 2/64/64/64/64/1 2/64/64/64/64/64/3 2/256/256/256/256/3
Table 1. Summary of three INR datasets for exploring the generalization ability of INRs from few-shot learning.

Adam [16] for 1,000 steps with learning-rate 5e− 4. When
the PSNR of the reconstructed image from the learned INRs
is greater than 40, we use early stopping to reduce the gen-
eration time.

The transformer has a hidden size of 64 (i.e., the size
of each token after linear projection), 4 layers, and 4 self-
attention heads. For the training of few-shot learning, we
adopt the Adam optimizer with a learning rate 1e − 5.
We calculate the normalization mean and variance layer by
layer on meta-train set. For the evaluation of the few-shot
learning, following [29, 8], All methods are evaluated over
1,000 few-shot episodes unless noted otherwise. For imple-
mentation, we opt for the PyTorch [24] and Pytorch-Meta
package.2.

3.2. Dataset Details

In our study, we examine three datasets: INR-
Omniglot [18], INR-Fewshot-CIFAR100, and INR-mini-
ImageNet, which range in complexity from simple to chal-
lenging. We provide detailed descriptions of each of these
datasets in the subsequent sections.

INR-Omniglot INR-Omniglot [18] is the derivative
dataset of Omniglot, consisting of 1,623 characters from
50 different alphabets. Each of these was hand drawn by
20 different people. The large number of classes (charac-
ters) with relatively few data per class (20), makes this an
ideal data set for testing few-shot learning on INRs. We
exactly follow the dataset split from [18], and extract the
corresponding INRs. Due to its simplicity and representa-
tiveness, all ablation studies in our experiment are carried
out using the INR-Omniglot dataset.

INR-Fewshot-CIFAR100 We curate a derivative dataset
for the purpose of few-shot learning on INRs, derived from
the Fewshot-CIFAR100 dataset [22, 17]. We split the orig-
inal dataset by superclass to minimize information overlap
and make it more challenging than other datasets, such as
INR-Omniglot. The original CIFAR100 dataset comprises
32×32 color images belonging to 100 different classes, with
600 images per class. These 100 classes are grouped into
20 superclasses. The train split contains 60 classes belong-
ing to 12 superclasses, while the validation and test splits

2https://github.com/tristandeleu/pytorch-meta

contain 20 classes belonging to 5 superclasses each. This
split allows us to better understand the generalization abil-
ity across both classes and superclasses.

INR-mini-ImageNet To further explore the generaliza-
tion ability of INRs on a more challenging dataset, we cu-
rate a dataset from the mini-ImageNet dataset, proposed by
[35], contains 100 classes, each with 600 84 × 84 images.
To perform meta-validation and meta-test on unseen INR
tasks (and classes), we use 16 and 20 classes respectively,
isolated from the original set of 100, leaving 64 classes for
training tasks. We follow the same train/validation/test split
as suggested by [25, 35].

3.3. Experimental findings

Below, we provide a series of ablation studies across dif-
ferent optimization axes that are important to perform dis-
criminative learning for INRs in the challenging few-shot
domain. The aim is to present a series of foundations to
build upon for the long-term goal of obtaining high repre-
sentational power for image-based INRs.

3.3.1 Higher complexity, higher accuracy

We present the main results for INR-Omniglot and INR-
Fewshot-CIFAR100 in Tables 2 and 3, respectively. We
compare primarily three methods:1). Zero-learning few-
shot evaluation, where we do not train any network but
instead compare the INR representations directly using
similarity matching based on cosine distance. 2). An
MLP is used as the encoder P (·; θ) for conducting train-
ing, followed by the matching loss from MatchingNet [35].
3). Transformer-based methods, where we first organize
weights and biases into tokens and feed them into trans-
formers.

We investigate both low- and high-complexity INR
structures, with details in Table 1. Our network is trained
using the 5-way 5-shot configuration. For this experi-
ment, we utilize the most complete version of our method,
with data augmentation from INRs, normalization, fixed
weights, and sine-based activation functions. In later ab-
lation studies, we will individually investigate all these
choices with their impact on few-shot learning using INRs.



Methods 5way - 1shot 5way - 5shot 10way - 1shot 10way - 5shot

Low-complexity INR
zero-learning 28.1± 0.14 30.1± 0.94 13.1± 0.51 14.3± 1.23
MLP 29.1± 0.21 33.2± 0.33 14.2 ± 0.89 16.3± 0.53
Transformer 38.91± 0.64 45.6± 0.93 23.82± 1.13 30.46± 0.94

High-complexity INR MLP 33.1± 0.79 35.4± 0.63 17.2± 0.73 18.2± 0.68
Transformer 56.2± 0.98 62.86± 0.94 40.14 ± 0.84 46.1 ± 0.98

Table 2. Few-shot classification accuracies of INR-Omniglot. We trained the network using the 5-way 5-shot configuration and evaluated
it under different combinations of ways and shots. For the MLP approach, we adjust the number of layers and hidden units to align them
appropriately with the parameter count of the corresponding Transformer.

Methods 5way - 1shot 5way - 5shot 10way - 1shot 10way - 5shot

Low-complexity INR
zero-learning 22.1± 0.54 23.1± 0.45 11.2± 0.56 12.1± 1.32
MLP 23.2± 1.32 24.2± 0.65 15.6 ± 1.23 13.4± 1.32
Transformer 25.2± 0.68 27.4± 0.56 14.2± 1.4 16.34± 0.93

High-complexity INR
MLP 28.1 ± 0.78 30.5± 1.24 17.4± 0.74 20.3± 0.87
Transformer 31.2± 0.89 36.9 ± 0.74 19.2 ± 0.39 22.58 ± 0.97

Table 3. Few-shot classification accuracies of INR-Fewshot-CIFAR100. We trained the network using the 5-way 5-shot configuration
and evaluated it under different combinations of ways and shots. For the MLP approach, we adjust the number of layers and hidden units
to align them appropriately with the parameter count of the corresponding Transformer.

Figure 3. Increasing INR augmentation view number from 1 to
5 can boost the performance in different way numbers.

First and foremost, our observation indicates that INRs
with higher complexity, characterized by the parameter η,
can lead to substantial improvements when compared to
low-complexity INRs. This conclusion holds true across
various datasets, way numbers, and shot numbers. The
“zero-learning” method signifies two key points. Firstly,
the INR weights already exhibit a notable degree of distinc-
tiveness, and this distinctiveness has the potential to esca-
late as more intricate INRs are employed. Secondly, the in-
corporation of MLP or Transformer components yields sig-
nificant advantages when compared to the “zero-learning”
approach. This observation underscores the necessity of in-
troducing supplementary encoding to the initial INRs. This
additional encoding plays a crucial role in facilitating the

generalization of classification to INRs that were previously
unseen.

Secondly, We note that a significant disparity remains
when compared to image-space meta-learning. For in-
stance, the present state-of-the-art result on the image Om-
niglot dataset approaches 98.9% in the 5-way 5-shot con-
figuration [35]. This discrepancy highlights the long road
ahead for the problem of INRs generalization. Importantly,
our focus isn’t solely on exploring INRs as a distinctive fea-
ture representation, but rather on scrutinizing its ability to
generalize effectively to INR classes that haven’t been en-
countered previously in training.

To the end, in Table 5, we further reveal that the com-
plexity of the INR network plays a pivotal role in its per-
formance across various shot numbers. Particularly in one-
shot scenarios, a noticeable improvement of approximately
40% can be observed when compared to the performance of
low-complexity INRs.

3.3.2 Use INRs as natural data augmenters

INRs allow us to enhance the limited data by incorporating
multiple perspectives of INR for each image. This distinct
INR viewpoint for each image is realized by employing
slightly varied iteration numbers, such as 800, 900, 1000,
1100, 1200. As depicted in Figure 3, we consistently ob-
serve improvements as the count of augmented perspectives
grows. From an intuitive standpoint, given that diverse per-
spectives are integrated into a single image, they can be per-
ceived as distinct features of that image, thereby potentially
boosting the classification accuracy. This is a unique feature
of INRs that provide additional data complexity out-of-the-



box.
We also systematically increase the shot number across

various way numbers, such as 5 and 10. Notably, our pro-
posed approach consistently attains improvements through
the utilization of multiple INR shots within the meta-
learning context. This trend is evident in Figure 4. The
trend underscores that distinct INRs originating from the
same class indeed exhibit comparable encodings within our
network. Consequently, they can collectively enhance over-
all performance.

3.3.3 Fixed weights benefit INRs

Because of its simplicity, we primarily explore two possible
options: random initialization and fixed weight initializa-
tion. For fixed weight initialization, we optimize a random
image to acquire a fixed weight, which then serves as the
initialization for all other images within the INR extraction
process. Derived from the data in Table 9, we can draw the
conclusion that maintaining fixed weights yields superior
performance when contrasted with using random weights.
Our hypothesis is that the fixed weight initialization results
in a more initialization-coherent INR embedding for meta-
evaluation purposes.

3.3.4 Sine activations instead of ReLU

In Implicit Neural Representation, ReLU and SINE are the
most common choice of activation functions. In Table 7,
we compare ReLU to the sine-based activation functions in
SIREN, under the sample network complexity, which is 2×
64× 64× 64× 64× 1. We observe that SIREN can achieve
a higher degree of generalization gain compared to ReLU.
We therefore recommend this activation function over the
standard choice in the field.

3.3.5 Don’t forget normalization

In Table 8, we observe that, similar to discriminative meth-
ods in the image space [27, 7], normalization is necessary
in INRs as well. We hypothesize that this is attributed to the
normalization of the encoder’s weights, which contributes
to the optimization process.

The complexity of the encoder P (·; θ) Our observa-
tion reveals that the complexity of the encoder, denoted as
P (·; θ), should not be excessively high to avoid the risk of
overfitting in few-shot learning. Interestingly, this finding
contrasts with the influence of the INR parameter η. We
hypothesize that this discrepancy is attributable to the re-
dundancy present in the INR representation, which places
a constraint on how complex the encoder can be without
becoming overly intricate.

Scaling up to more advanced datasets We have ex-
tended our investigation to assess performance on a more

Figure 4. Shot number v.s. accuracy. Increasing the number of
shots in meta-evaluation can help the network accumulate more
accurate features from different prototypes.

complex dataset, INR-mini-ImageNet, as shown in Table 4.
The results are not as favorable as those achieved with
INR-Omniglot and INR-Fewshot-CIFAR100, indicating the
challenging nature of this particular task. The complexity of
the dataset itself may contribute to this outcome. Addition-
ally, the images in this dataset have a significantly higher
resolution than the 32× 32 resolution of the other datasets.
We expect that the outcomes on this complex dataset will
inspire further exploration, especially within the context of
more advanced datasets.

4. Conclusion

This paper explores the generalization of Implicit Neu-
ral Representations (INRs) in the context of few-shot learn-
ing, considering their potential to offer consistent repre-
sentations across diverse data types [2, 28, 26, 11]. To
achieve this, we introduce a baseline founded on the trans-
former architecture. Additionally, we carefully analyze dif-
ferent factors, such as INRs complexity, model complexity,
augmentation, weight initialization, and activation function
of INRs. We hope that our exploration of INRs can in-
spire more interesting and broad applications of this special
regime.

In future work, we are considering the improvement of
how weights and biases are utilized by employing heuristic
pruning techniques. Furthermore, there is a possibility to
expand our investigation into domains like videos and point
clouds, in order to provide additional support for the similar
hypotheses proposed in this study. On a different note, we
can also conduct a more thorough exploration of the impact
of permutation symmetry [21, 36] within the weight-bias
space, with the intention of incorporating a stronger induc-
tive bias into the network’s architecture. Lastly, we might



Methods 5way - 1shot 5way - 5shot 10way - 1shot 10way - 5shot

High-complexity INR
zero-learning 22.1± 0.54 23.1± 0.45 11.2± 0.56 12.1± 1.22
MLP 25.1 ± 0.54 26.5± 1.02 14.4± 1.24 15.3± 0.47
Transformer 25.2± 0.94 27.9 ± 0.56 14.2 ± 0.95 16.58 ± 1.27

Table 4. Few-shot classification accuracies of INR-mini-ImageNet. We trained the network using the 5-way 5-shot configuration and
evaluated it under different combinations of ways and shots. For the MLP approach, we adjust the number of layers and hidden units to
align them appropriately with the parameter count of the corresponding Transformer.

5-way INR-Omniglot

INR structure 1-shot 5-shot

2 layer 32 dim 38.91± 0.64 45.6± 0.93
4 layer 64 dim 56.2 ± 0.98 62.86 ± 0.94

Table 5. High-complexity INR is preferred.

5-way INR-Omniglot

INR layers 1-shot 5-shot

First 2 layers 20.34 ± 1.81 25.30 ± 1.75
First 3 layers 42.31 ± 0.89 46.69 ± 0.74
First 4 layers 53.2 ± 0.98 56.86 ± 0.94
All 56.2 ± 0.98 62.86 ± 0.94

Table 6. As more INR weights are included, the performance
are better. All weights are necessary.

5-way INR-Omniglot

Activation Function 1-shot 5-shot

ReLU 54.2 ± 1.32 59.1 ± 1.65
SIREN [28] 56.2 ± 0.98 62.86 ± 0.94

Table 7. SIREN activation works better than ReLU.

5-way INR-Omniglot

Method 1-shot 5-shot

w/o normalization 32.67 ± 1.81 34.2 ± 1.75
w/ normalization 56.2 ± 0.98 62.86 ± 0.94

Table 8. INR Normalization is necessary on the few-shot learn-
ing.

5-way INR-Omniglot

Initialization 1-shot 5-shot

random weight 55.2 ± 0.89 61.86 ± 0.49
fix weight 56.2 ± 0.98 62.86 ± 0.94

Table 9. Fix weight initialization during INR overfitting is bet-
ter.

explore the application of generative modeling approaches,
such as the diffusion model [30, 15, 31], to enhance the
training process and mitigate the issue of overfitting in the

Implicit Neural Representations.
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